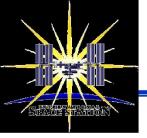

Modeling Payload Stowage Impacts to Fire Risks On-board the International Space Station

April 8, 2010

Kellie E. Anton, Ph.D. Patrick F. Brown

Purpose/Background

- <u>Purpose</u>: To determine the risks of fire on-board the ISS due to non-standard stowage
- Background:
 - ISS stowage is constantly being reexamined for optimality
 - Non-standard stowage involves stowing items outside of rack drawers
 - Fire risk is a key concern and is heavily mitigated
 - Methodology needed to account for fire risk due to non-standard stowage to capture the risk



Fire Risk Background

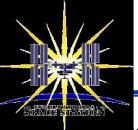
- Why is fire a concern on-board ISS?
 - Experience: Mir
 - Crew safety
 - » Air quality
 - » Injury
 - » Death
 - Lead to other failures

General Assumptions

Materials

- Material selection
 - » Control combustibility
 - » Control fire propagation
 - » Minimize fire risk
- Propagation is mitigated in material selection
 - » Tests for propagation to determine suitability

Human factors


- Processes are in place to minimize fire risk
 - » Minimum distances between payloads and ignition sources
 - » Personal effects stowage
- Dependent on human adherence to the process

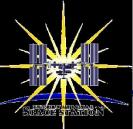
Microgravity

- Fire behaves differently
 - » Hotter
 - » Shape and movement
 - » Oxygen sourcing

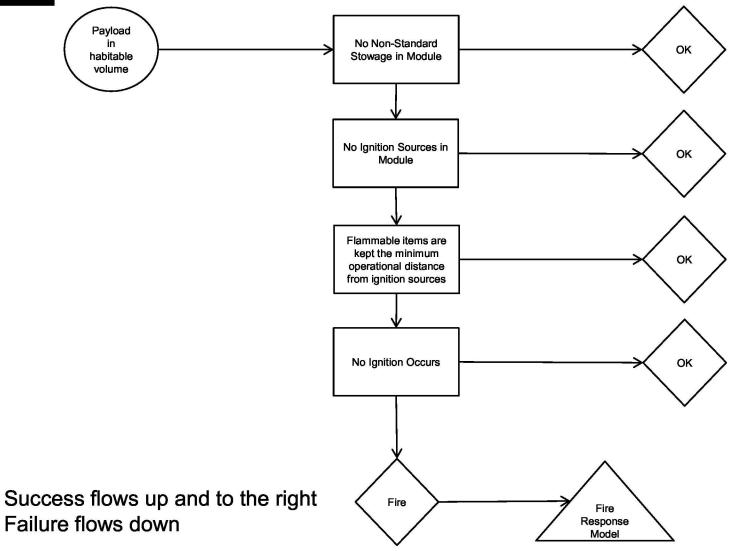
S130F012068

Modeling Techniques

Qualitative


- Payloads
 - » Volume layouts
 - » Flammability factors
- Co-location
 - » Human Error Probabilities (HEP)
 - » Proximity likelihood
- Fire
 - » Modeling
 - » Expert elicitation

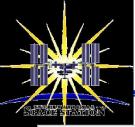
Quantitative


ISS022E043794

- Basic events probabilities derived from qualitative analysis
 - » Factor indices
- SAPHIRE event tree and fault tree structure

Event Sequence Diagram (ESD):

Qualitative Fire Analysis



Module	Quantity	% Utilization (1-5)	Age (1-5)	PCU Factor
	1	0.8	0.2	Calc
AIRLOCK	1	2	3	3
ATV				0
COLUMBUS	3	4	3	12
DC1				0
FGB	3	2	3	7
HTV				0
JEM	2	5	1	9
JLP				0
NODE 1	3	2	3	7
NODE 2	1	5	3	5
NODE 3	2	4	1	7
PGS				0
SM	4	5	4	20
SYZ				0
US LAB 15A	9	3	3	27
US LAB 20A	9	3	3	27

• Use counts, utilization, age

Define factors

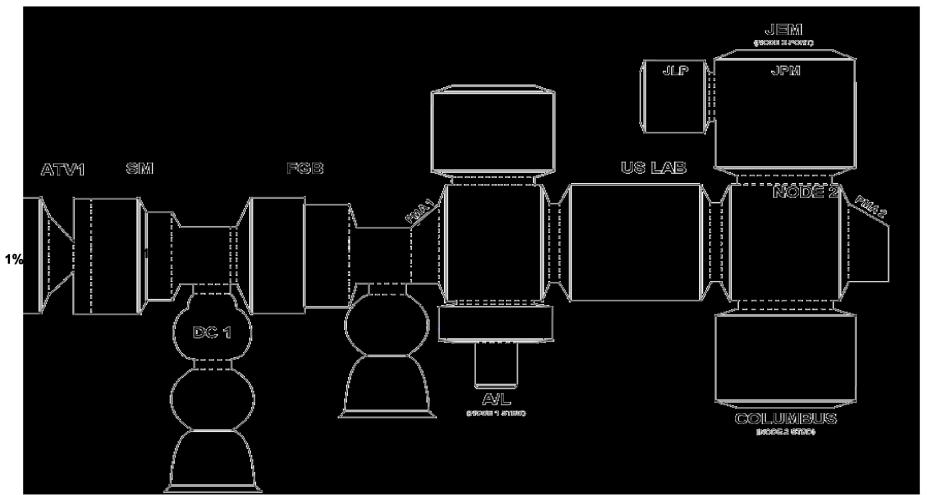
Weighted products of parameters

Qualitative Fire Analysis

COMPONENT	Likely Hood Factor (1-5)	ATV	COLUMBUS	JEM	JLP	NODE 1	NODE 2	NODE 3	US LAB 15A	US LAB 20A
	ractor (1-3)								the the second second the second second	
PSU_SSC	4	0	32	20	0	36	20	56	96	120
Display & Monitor	3	0	0	0	0	0	0	3	39	27
Printer	2	0	0	0	0	0	0	0	6	6
Exercise Equip	3	0	0	0	0	0	0	12	9	9
Battery	4	16	0	0	0	0	0	0	8	8
O2 Supply Tank	2 7	4	0	0	0	0	0	0	0	0
Galley	5 💆	0	0	0	0	0	0	0	5	5
Payload (Misc. Equip.)	3 💆	0	78	102	0	0	3	69	147	117
Compressor	4 💆	0	0	0	0	0	0	0	0	0
Electrial Heater	5 💆	0	0	0	0	0	0	0	0	0
Pump Assembly	1	0	5	8	0	0	8	8	5	5
Fans	2 7	0	34	34	0	46	20	68	46	46
Hydrogen	2 7	0	0	0	0	0	0	6	2	0
		81	499	695	20	366	456	875	1936	1902
	15A	1%	7%	9%	0%	5%	6%		26%	
	20A	1%	6%	8%	0%	4%	6%	11%		23%
	15A	1%	7%	9%	0%	5%	6%	0%	26%	0%
	20A	1%	6%	8%	0%	4%	6%	11%	0%	23%

Develop indices

% of overall fire risk


Convert to quantitative factor

• Ignition source index

SAMPLE Qualitative Results for Fire Risk

Qualitative Stowage Analysis

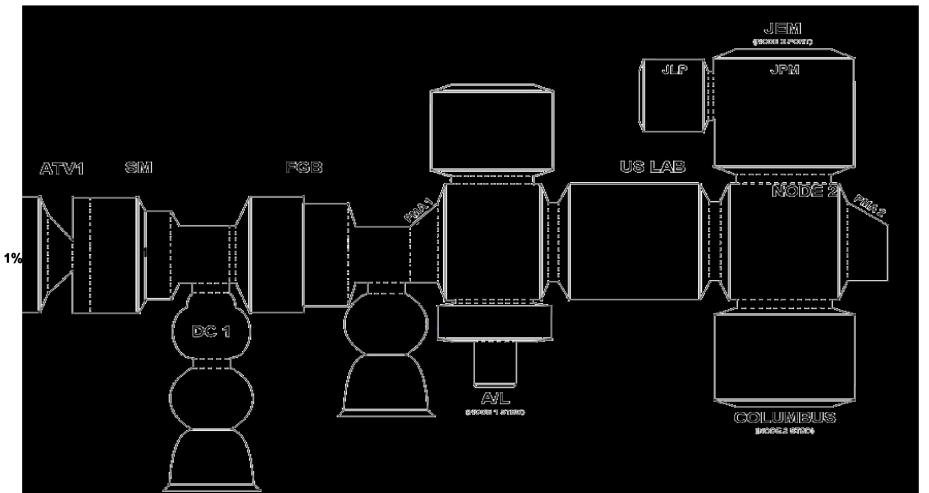
Module	Stowage Density (Vol stow/habit vol)	Density factor (0-10)	Combustibility (0-5)	Stowage Factor
		Calc		Calc
AIRLOCK	0.40	8	1	0.16
ATV	0.80	10	3	0.6
COLUMBUS	0.20	4	1	0.08
DC1	0.10	2	1	0.04
FGB	0.25	5	2	0.2
HTV	0.80	10	1	0.2
JEM	0.45	9	2	0.36
JLP	0.30	6	1	0.12
NODE 1	0.10	2	1	0.04
NODE 2	0.20	4	1	0.08
NODE 3	0.20	4	1	0.08
PGS	0.70	10	3	0.6
SM	0.50	10	2	0.4
SYZ	0.10	2	1	0.04
US LAB 20A	0.15	3	2	0.12

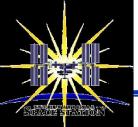
Calculating the Stowage Factor

- Volume
 - Habitable volume
 - Stowage CTBEs
 - Table of high to low
- Combustibility
 - Level of flammability
 - Table of high to low
- Define factors
- Develop index value
- Quantitative factor

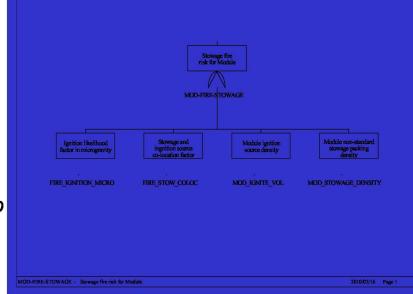
Co-location factor to account for:

- Processes for minimum distance
- Human Error
 - CREAM or THERP analysis


Ignition factor to account for:


- Likelihood that fuel and ignition source will start fire
- Expert elicitation or fire modeling

SAMPLE Qualitative Results for Non-Standard Stowage



Quantitative Analysis Basic Event Data

- ignition Likelihood
 - Microgravity sensitive
 - Expert elicitation
- Co-location
 - Human error
 - Items are not placed according to established processes
- Ignition Source
 - Analysis of potential sources
- Stowage
 - Analysis of non-standard stowage

All conditions have to come together simultaneously to have a fire.

Conclusions

- Attempt to capture fire risk on-board station
- Placement of stowage and selection of materials is well mitigated
 - Mitigations in place
 - Materials testing
 - Human inclusion creates uncertainty
 - » Follow processes
 - » Personal effects
- New methodology
 - » Utilizes qualitative analysis
 - » Develop the quantitative factors from qualitative results and elicitation

Conclusions

Improve the fidelity of the current ISS PRA Fire Model

- Accounting of factors not currently modeled
- Converge towards true fire risk

Heavily mitigated

- Materials and processes are designed to eliminate fire risk
- Risk still remains
- Personal effects add uncertainty
- Human behavior is a contributor
- Overall, risk likely to be low